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BEST RATIONAL APPROXIMATIONS WITH NEGATIVE POLES TO e X 
ON (0,60)

E.H . Kaufman , Jr. and G.D. Tay lor

In this paper a theory for approximating e 
X 
on (O,~’~) with

rational functions having negative poles is developed. Numerica l
results suggest that the best uniform approximation to e~~ on

from this class has only one pole and this is shown to be
the case when using rational functions of this form which are
linear pol ynom ial s di vide d by quadratic polynomials. Numerical
results are given and compared to recent results of Saff , Scho~i—
hage and Varga .

1 Introduction

Let denote the space of all real al geb ra ic pol ynom ia ls  of
degree less than or equal to in. For each in = 1 ,2, . . . ,  define R
by

in
R {R’-P/Q: P C iT r Q(x) H (q~x+l), q. .O for all i}.i=l

Thus, R is the collection of all rational functions with negative

pole s from ~~ fo,oo). Define A by

(1 1) X
m tnf{~~e

X 
- R I I Lco

~~ R 
~. Rm }

It is known that A converges geometrically to zero (i.e. u r n1. m~~ -4

0) since Saff , Sch’~nhage and V~irga (S~ have proved that 0 ~~~~ 
~~~

there exists a sequence (R}~~ 1, with R (x) P
5~_ 1

x)/u+ !)m,
— 

~m-l 
C it

1 1  
such that

3 _ 2 / I < f l J J e
ut _ g , J ~~

m 
< !

or’~ ~
w

• In addition , since the poles of t~ (x) are all real it follows that

mus t converge geometr ica l l y ~~ in an infinite sector
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syimsetric about the positive x-axis (6). In what follows , we
define

(1.2) i.i~ 
— inf{IIe

_X 
— 

(1~~x )m 11 L (0 OI~~~ 
P E~ TTm..i

}
~

An applica tion of this theory is in the construction of num-
erical algorithms for solving linear systems of orainary differ-

ential equations which arise from semi—discretiza tion of linear

parabolic partial differential equations (see (1], (5))~. Num-

erically, this reduces to an iteration of the form

(1.3) 
(r )  

— A ’,~ + R (t,~A){W
(r 1) 

— A
1
~)

where A is a nxn matrix (band), k and are n dimensional

vectors (n is related to the stepsize of the discretization), ~tt

is a scalar and R is the rational function defined above . Due

to the special form of the denominator of Rrn~ 
(r )  

can be obtained

from the repeated inversion of (I + ~~~~ A)~~~1 
= 0 < .t < m - 1

using an appropriately defined - This is an attractivc method

numerically, since an LU factorization can be done for I + A

only once and this factorization will preserve any band structure

that is present.

One can construct a similar numerical method using a solution
* * m

R (x) P _1 (x)/ TI (q1x+l) to (1.1). The apparent d isadvanta~’em W 
i~ l (r )

of such a method compared to that of (s) is that is fnund

from

( II (I+q .~ tA))w~
’
~ ”{ ~j (I+q.atA)}A ~~k+P

* (,~tA)(w~~~
1) _A_ 1 k}

i—I i—I ~ ~ rn-I -

VI—
which will involve a greater number of operations (though , less o

~c IlL 
~C~I,M

than m LU f a c t o r i z a t i o n  and 2m substitutions). The advantage of JUSflflCA,~,

this method is that will be smallei than ii giving increased .. .

accuracy. However , it appears (numerically) that K actually

— L~
L InSEL



has q1 q2 — .. q~ and A~ is approximately one half  of ~i

for in > 2. Thus, using R gives a method that has the same

desirable properties as that of (1.3) and increased accuracy .

In the next. section we shall state some general facts con-

cerning uniform approximation from (these results will appear

in a future paper (3)), give a theoretical treatmettt of best

uniform approximation of (1.1) for the special case that in 2

and state some conjectures . In the last section we will discuss

our algori thm and present some numerical results.

2 Theoretical Results

In this sec tion we begin by giving a existence theorem for

approximating from on (O,cn). This result is valid for a large

class of func tions (con taining e~~ ) .  We shall  out l ine a proof for

the special case that in — 2.

THEOREM 2.1. There exists R* R for which I e x_R*(x ) I IL °&,o.)
-

~~~ II
.

THEOREM 2 .2 .  There exists R* c R~ ~~~ which I le x_R*(x )  I I L~~O , m
A2 .

Proof. The proof begins by first observing that A
2 <}  - Thus,

let {a~~
}
~ 

(b
0
}, {q1

) and {q20
} (n”1 ,2,...) be sequences such

a x+b
that q1~ 

> 0, q~ ~ 0 for all n and ~ ~ I le
x 

— 

(q
1~
x+1)(q

2~x+l)’ 
I

4 A
2 
as n •~~ , where we will no longer write the subscri pt L (0,~ )

on the norm bars. Next , the proof is divided into two cases. The

first casc is when the sequences C~1~ } and {q
2
} are bounded . In

this case it follows that the sequences {a~~) and (b0
} are also

bounded and the desired result follows as in the standard rational

approximation theory.

Thus, let us assume that the sequences {q
1~) and (q25) are

not both bounded . By relabelling and extracting subsequences we

I - 

-—.---. 

I



,
.

may assume that q1~f ~ and q1~ 
> q2~ for all n. In addition , by

looking at the error curve at x 0 and x • respectively, we

have that < b~ < for all n, and for all n sufficiently large

(say n > n0
) that

_ _ _ _ _ _ _ _ _ _ _  

$

(2.1) O < ~~~< ~ 
2 n < H

(.
~ q1 

+l)(
~ q20”)

where n and H are positive constants independent of n.
Nex t, we claim that the sequence {q2~} must be bounded. In-

deed , if not then by passing to subsequences (and relabelling) we

may assume that q
20 ~ °° as n -~~ ~~~. Let Z

n f*1ln~~4l2n bh iI l

£ (a,”). Note that z
~4 

0 and that
a x  + b  a x

(q 15x5
+l)(q;5x~+l) ~~

- (~1~~~ +i) (q 20x0
+l)  •‘ 2

as n -, ~~~. For n sufficiently large this contradicts our assump—
a x + b

tion that 1e~ — 
(q1~x l  q

2
x~iIJ~~ 

~~~~~~~ Thus , {~~~~~~~
} must be

bounded . Since a + ~ by (2.1), we have , reciprocating (2.1),

that there exists positive constants c1 and c
2 

independen t of n

such that for n > n1 > n0,
C1 q c2(2.2) 1 ~~~~~~~ 

~~1— 
~~

By (2.2) we may extract a subsequence (and relabel) for which
q2~ 

+ > 0 and q1~
/a5 ~ c* > 0 as n ~ ~~~. Hence , for fixed

x t (0,—) we have that

a x + b
S 1 • b*

T~jj~x+l)(i25*
+l) à*(q*x+l) .q*z+l

By continuity, II~~ 
— q*z+i II ~ 

~2 
completing the argument. .

I 
- 

~~~~~~~~



The above proof (suitably modified) also establishes the

following corollary where R {R”P/Q: P C 1Y 1, Q(x).(qx+1)
m
,

q > o).

COROLLARY 2.3. There exists R c R !~~~1~ ~~~~~~~ 
l i e  x_ R I l

inf(IIe X_ RlI : R c R )

Nex t, we wish to turn to proving that for the m 2  case the

best approximation from is actually contained in P
2
. To do

this we shall first show that neither of the coefficients in the

denominator is zero and that the numerator and denominator do not

have a co~~on non—constant factor .

THEOREM 2.4. The best 5j~ roximation to e X 
Lr~~ 

R2 j~. !!2! 2.~ !. ~~ax+bform —~~, q > O .

Proof. To prove this we use some computed results. First of all ,

running the Remes—Difcor algorithm as described in (2], we found

the “best” approximation of the form (ax+ I
~ 1

x+q
2

’
~ (wi th !q 11 ~ . ‘‘

I ~2i 
< 1) to e on X 

~~~~~~~~~~~~~~~~~~~~~ 

This routine returned the

values: a — — .0934450154, b .6698426328 , q
1 

1.0 and q2 
—

.6330537047. It also returned four extr~rne poin ts x
1 

0.0, x2 
=

....~~ .44 , x3 — 2.76 and x4 20.0 such that e — 1ax 1
+blq

1
x .+q 2)

(—l)’e. with e. > .058 for all 1*1 ,2,3,4. Thus, by a de La Vallee

Poussin type argument we have that inf {Ile x_ r l I L~(O ,~) :
r C R t O,c~)) > .058. Next , setting r*(x) a*x+b1~I(p~x+l)

2 with

— — .1853243706, b* — 1.02210932? and p* — .524169575 we cal-

culated ~ • max (Jc
’
~
_r*(x)~ : ic — i/l000 for 0 < 1 20,000) and

found that y < .023. Next, by dividing [0,20) into (o x) and

(z,20) where z is the zero of r*(x) we are able to show that

I E’(x)i 3.2 on tO,20) where E(x) — e~~
_r*(x). Using this and

the above va lue of y with Taylor ’s theorem for line ar polyn omial s
we can show that IE(x) I 

-
< .0246 on [0,20). Since E(x) > 0 and

E’(x) ( 0 for x > 20, we have tha t  IE(x ) I ~ E(20) < .022 for



x > 20. This completes the proof.

Note that this proof also shows that r~ is a better approxi-

mation than the one calculated in [5) for m2 . Next , we turn to

proving tha t for any best approximation in the iu 2 case , the
coefficients in the denominator coalesce; that i~ q1 q

2
.

ThEOREM 2.5. ~~~ best approximation to e X 
from R2 on (0,

0) be—

1ong~ t o R 2 ; that is, it is of the form~ax+t~?I(qx+1)
2 wi th q >0.

Furthermore, q > 0, and the numerator  and denominator have no
non—constant coumton factors.

Proof. The facts that q > 0 and the numerator and denominator

have no non—constant coumion factors follows from Theorem 2.4.

Let R(x) = (p
1
+p
2

x) / ( q
1

x+1)(q
2
x+l) be a best approximation to e X

on (o,o’) from with 0 < q1 
< q

2
. We first claim that e

X 
— R( x )

has at least 5 alternating extreme points in to a] where a is

ëhosen such tha t x > a implies Ie~
c_R (x)I 

~~ . .}IIe 
X_R(x)II

L
C0
(o,~) 

=

This follows from the fact that R c R~[o,aJ and has deflect
zero, since if e X

~R(x) had fewer than 5 alternating extreme

points , then the standard argument to prove alternation in R~(0,cc) --

can be used to find R(x)i(a+bx)/(1+cx+dx2) c. R~(0 ,ct] such that

II e~
’_i (x)IIL00(Q,a) 

< I I e x_ R ( x ) I I LOO(Q ,a) and with 1p 1
—a l , 1p 2 — b I ,

I ~~ c~2 cI and ~q1q2
—d~ as small as desired . Thus, we can guaran-

tee that l I e 
X_ R(X ) H LcU(,~~~) < A

2 
holds and that ~(x) also has

unequal negative roots (the discririinant of 1+cx+dx2 can be made

arbitrarily close to that of l+(q1
9q
2
)x+q

1
q
2
x2). This, of course ,

is a contradiction showing that e~~
C_R (x) must have 5 alternating

extreme points on (0,ci).

Thus , R(x )  is the best approximation to e~~ on (o ,c&) from

R2 by the classical alternation theorem and also , therefore on

(o,~). Thus, we shall comp lete this proof by shoving that the

I —
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best approximation to ~~~ from R
2 f0,cc) does not have real poles.

To do this , we computed the “best approximation ”, R(x)

(a+bx)/(1+cx+dx 2) to e~~ from R1[0,2Q1 on a 200,001 point equally
spaced grid imposed on [‘0,203. The computed results (rounded to

10 decimal places) were a .9911236330, b = — .1577830783 , c =

.6704780400 , d .6494291043; the extreme points were y1 0, y2

.2483 , y
3
zrl.O852 , y

4
=3.227l and y5 l3.lSl8. The absolute errors

at the extreme points were .0088763670 (they actuall y d i f f e red  by
less than 5x10 ’8) and the sign of e~~—R (x) was positive at y1.
The discriniant of the denominator was —2.1481756150. By direct

calculation , it can be easily seen that E(x) C x_R(X) > 0 and

E’(x) < 0 for x > 20. Thus, lIE (x )II L~(o,~) 
— IIE (x) II L

CO
[O 2o).

Now, let us assume that there exists R c having negative poles

and for which ! I e
_X_

~(x)lI < I IE(x ) l I holds , where for the re-

mainder of this proof 
~~~ IHI L (o,2oJ This will lead to a

contradiction and give our desired result. We begin by noting

that IE’(x)I < 1 for all x c [0,20) since _e X and —R ’(x )  have
opposite signs for x C [o, —a/b) and R’(x)I < 1 for all x since

the denominator is increasing faster than the absolute value of

the numerator for all x. For x C (—a/b ,20) simp ly look at the

ratio of the maximum of the numerator on this interval and the

value of the denoininatorA—a/b. Thus, by the mean value theorem

we have that for each x C t0,20~ , IE(x )—E (x ) l  < .00005 where x de-

notes a closest grid point to x. Let 6 = .000054, then h E l l  —

min{jE(y.)~ : i—I , .  . ., 5} < 6 sin e 
~

E(y
1)—E(y .)I 

< .000002 for i,

j l,...,5. Since we are assuming that Ic~~—R (x )II < IIE (x)H,
~ we must have that l I e ~~~( x h I  — min (IE (y.)I~ i~~ i ,...,s} 6.

Now, there must exist i0, 1 ~ 
10 

< S øuch that (1) ‘°(R (y .  )

— ä(y
~ 
)) > 0 since R F R. Let us assume that n

~
ax{(—l)’(R (y

~
) —

i l ,...,5) — (—l)5(R (y
5)4(y5

)). Next , find R*(x)



• 
—

I

(a+~a+(b+~b)x)/(1+(c+Ac)x+(d+~d)x~) such that R*(y1
) R(y

L
) +

(_j )
t

6 for i 1,.. .,4. To do this we must solve the linear

system Aa+Aby1 Acy1
(R (y

1
)+(—l)’ô)—A dy~

(R ( y
1
)+(—l)’~ ) = (l+cy~+dy~)

(_l)16, i 1 ,. . . ,4. Solving this with Cramer ’s rule , with the

determinants computed by cofactor expansion to avoj.d error magni-

fication by divisions , g ives t~a = — .0000540000 , Ab .0004710533 ,

Ac — .0005063974, Ad .001.9944507. Using this R*, we have that

R(y
5
) — R*(y5

) — .0000746489 and IlR (y~)_R *(y 1)I  
— < 2 x i0

18

for i 1,... ,4. The discrimant of R* was — 2.1.56832218. Now , by

construction , (_1)
t(~ (y

1
) —,,R*(y1

))  < 0, i l ,.. .,4, and also , for

~~~~ i = 1,...,5 we must have (—l)’(~ (y . ) )  <
~~~~~

‘

, since hl e~~~ (x) hI <

inin {IE (y.)l: i 1 ,...,5) + 6. Now, suppose (—l )
5(~.(y5

)—R*(y
5
))>0

(fo r, if not , then R ~* and we have our desired contradiction

as R* has non real poles). Then, we have that 6* + R(y5
) = R*(y

5
)

> ~(y
5
) and that 6* = (—i)5(R(y

5
)—~ (y

5
)) > (—l)’( R ( y~ )—~(y.)),

i 1,. ..,5 so that lR(Y~)—R(Y1)! 
< 6*, i = 1,... ,5. Letting

— R(y
1

) a 6~ , i = 1,.. .,4, we can estimate the coefficients

of R from the equations ~(y~) = R (y
1

) + 5 . ,  i = 1,... ,4, where we

know that I6~ I < 6*. Writing i~(x) = (a+Aa+ (b+Ab)x)/ (l+(c+Ac) +

(d+Ad)x~
), this system is equivalent to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i l ,...,4.

Once again we resort to Cramer ’s rule to estimate Ac and Ad.

Writing the determinant of the coefficients of this system as the

sum of four determinants , one of which had no 5
1

1 s in it (say D),

we then computed D (‘. .1194079538) and estimated upper bounds for

the thteu remaining determinants , subtracting these values from D

showed that the determinant of the coefficients .1192288500.

Calculating upper bounds for the numerator determinants in the

—— formulas for Ac and Ad and then estimating gives IAc i~..O0l2430l2l,



H 

- 

I i

IAd I < .0027602264. Thus, letting D1 and denote the discrimi—

nant of the denominators of R and R, respective ly, we have that

ID 1 — D1 J < .0127092755. Treating the other cases where the

maximum of (—l)’( R (y ~ )—~ (y .)) occurs for i = 1,2,3, or 4 , simil-

arly, we found that hD 1~~ 1I 
< .3959944800, .1.553098052,

.0673900941 and .0219551497, respectivel y.

We conjecture that this result is true for all m > 2. We

close this section by stating a local characterization and local

uniqueness result which will be proved in a forthcoming paperC3J.

Definition 2.6. R(x) (p
1
+.. .+p x

m 1 )/(qx+l)m C’
~m 

is a local

best approximation to e~~ on (0 ,00) if there exists a 6 > 0 such

that if ~(x )  a (p 1+ . . .+p xm l )/ ( qx+ 1) m C R ~ , lp ~
—
~~~I < 6,

i 1 ,...,m and lc—~I < 6 !.! ~~~~ 
hI e~~R(x)H .~ He

_X_
~(x)H. If , in

addition, strict inequality holds whenever R ( x )  ~ R(x) then R is

said to be locally ~~~~~~~~~~~~~~~~

THEOREM 2.7. Let m > 1. Then a nondegenerate R(x) a P(x)/Q(x) =

(p 1
+. . .+p~xm~~)/(qx+1)m 

~ 
(i.e. R $ 0 , P (x )  and Q (x )  ha ve ~g

~n~~nnn Laetnrs ~~~~ q > 0) j~ g ~~~~ local .~p~rox~j~~t ion to e
X

.~!2!! m on ~0 ,°‘) if and ~~~~ if e~~ 
- R( x) has at least m + 2

alternating extreme points. Whenever this occurs, R is locally

unique.

• We remark that numerical examp les seem to suggest that there

exist distinct R1, R2 ~~R2 satisfying this theorem .

3 Numerical Results

Our initial algorithm for computing approximations to e
X

from R and R inv,lved linearizing the denominator by Tay lor ’s

Theorem and setting up an iterative pfocedure , using the differ-

ential correction algorithm to compute an approximation at each

inner stage . Precisely ,  for R set g(q1,, . .. , q , x) —



—
I

and define ‘P.(q 1,. ~~~~~~~ — x .fl
1
(q.x+1) for j l ,...,m ,

i~j m
= g(q1,. ..,q ,x) — 

~ ~~~~~~~ ..,q , x). Thus,

if ~(x )  = 
~(x)/.~ 1

(~~.x+l), 0 
< 

~~ ~
. 
~~ 

< ... < q is an approxi-

mation to e~~ at some step in the algorithm , then a new approxi-

mation R(x) = (p
0
+p

1
x+. . .+p 1x~ )/Ji1(q~x+l) is found by cal-

culating 
~~~~~~~~~~~~~~~~~~~ 

that minimize

over T a finite subset of [o,NJ . Observe that the denominator in

this problem is precisely the linearization of g(q1,. . . ,q, x) via
Taylor ’s Theorem applied to the first m independent variables.

This minimum can be calculated by the differential correction

algorithm . Since this is a 1inearizati~~ of the problem we wish

to solve, if we force an ordering on the q1,. . . ~q~1ç to get a •~~ . /., 
~~

.

unique solution , it seems reasonable to expect that if the init-

ial approximation is sufficiently close to a best approximation

then this algorithm will converge to that best approximation.

This approximation must be calculated on a large interval

(the length of the interva l needed seems to increase as a func-

tion of ni , but not monotonically) to give a candidate for a best

approximation to e x on (0 ,00); and since we wish to get an

accurate approximation of the continuous solution , we must use a

fairly fine mesh so that card (T) will be large . Since the diff-

erential correction algorithm tends to become unstable as card

(T) grows large , we decided to use the Remes—Difcor algorithm

t 2] for calculating the linearized minimum. We did this because

this algorithm applies the differential correction algorithm to

certain (small) su’sets of T chosen in such a manner (depending

upon alternation ) that convergence to~ the solution on the whole

space occurs . Thus , we had no a priori guarantee that this would
work since a standard alternation theory does not exist for the



linearized minimization problem due to the addition of the con-

straints on 
~~~~~~~ 

However , in spite of this , the results of

the algorithm are acceptable in that the algorithm returned (or

tried to return) a solution in which the q. ’s coalesced and for

which the error curve e~~ — P(x)/.~~1(qx+l)
m 

(the final coalesced

approximation) alternated on m+2 points of T. Thus, by an alter-

nation theorem we have proved (33, we have a best local approxi-

mation from R and as we conjectured earlier; therefore , also

from we also ran an algorithm of this character for the class

R . In all cases it has given the same results as the above

algorithm app lied to R .  A precise study of these algorithms

remains to be done and we conjecture that convergence results

can be proved for both R
m 

and R , at least using the differenti~il

correction algorithm for the inner minimization.

We have run these algorithms for various va lues of m using

a grid with spacing .002 imposed on an interval (O ,N), where

N is chosen by trial and error so that the computed results make

it apparent that the error norm on (N ,00) is smaller than the

error on (o,N). The computations were done on a UNIVAC 1106,

which has roughly 18 digits of accuracy in double precision .

Initiall y ,  we start with p l , p
1
...~ p 

~~
0, q. j l~~ ..,m

and ran the program with additional constraintcq . < q.~ 1 
— DIFF

where 01FF is a nonnegative parameter. If 01FF > 0 we found

that the computed q1
’s immcdiatcly differed by exactl y DIFF , and

if DIFF was set equal to 0 the algorithm ran and the computed

q1
1 s coaliscee . The algorithm for R had a linearization in

‘
~ r~ ~,which the denominator of the approximation is ’g’m x ( q x + l ) m l  

+

/~ ~, (U—m)~x+1) (~X+l)
m
~~ E q’P1

(
~ ,x) + ~P0(q,x) where q is the value

from the previous approximation . Here the initialization was

p
O ~~~ p1 

= 

~m—l 
= 0, q = 1/n. Althoug h we allowed this

program to run for seven outer iterations , the coefficients near—

ly always stopped changing after four or five outer iterations,



and the computed absolute values of the errors at the m + 2

extreme points agreed to at least fourteen significant figures.

The results are shown in the table below , with the error of (5)

given in the last column for comparison purposes. The sign

attached to the last extreme point is the sign of E(x) at that

point . It should be noted that it is possible (arthough unlike-

ly) that in some cases there is a local best approximation other

than ours which gives a smaller error . In the in = 3 case we

have f ound another local best approximation (with. g = 1.05109 ~~~~~ j •
c

and I l e r r o r l i  = 1.33720 (—02) and in the m a 6 case there appear

to be at least th ree loca l best approximations other than the one

in the table.

Finally, we would like to thank Professor R.S. Varga for

bringing (43 to our attention where some of the results of this

paper and of (3) have also been obtained independently.

Table of Numerical Results

in last ext . pt. q I lerror l I I lerror l I ~
2 12.932+ .52416 2.27093 (—02) 2.49038 (—02)

3 37.250— .27127 8.04713 (—03) 1.5053 (—02)

4 83.814+ .17797 3.30771 (—03) 7.85325 (—03)

5 80.802+ .27866 1.16064 (—03) 3.05486 (—03)

6 152.352— .19296 4.26252 (—04) 8.89316 (—04)
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